Depletion of glutathione attenuates response of bone marrow stem cells to stromal cell-derived factor -1 [2007](IR91)BK
// - - Begin memo item - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - //
(Memo Item created on December 25, 2010 11:26 PM)
- - - Begin title or keyword:
Depletion of glutathione attenuates response of bone marrow stem cells to stromal cell-derived factor -1
http://www.fasebj.org/cgi/content/meeting_abstract/21/6/A737-b
- - - End title or keyword:
FASEB J.
April 2007
21 (Meeting Abstract Supplement) A737
(The FASEB Journal. 2007;21:702.12)
© 2007 FASEB
702.12
Depletion of glutathione attenuates response of bone marrow stem cells to stromal cell-derived factor -1
Smita Swaminathan Iyer1, Jianguo Xu2, Dean P Jones2, Kenneth Brigham2 and Mauricio Rojas2
1 Nutrition and Health Sciences Program, Emory University, 615,Michael Street, 215 Whitehead Bldg, Emory University, Atlanta, GA, 30322,
2 Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, Emory University, 615,Michael Street, 205,Whitehead Bldg, Emory University, Atlanta, GA, 30322
ABSTRACT
In adult organisms, stem cells, found primarily in the bone marrow and in low numbers in other organs, are mobilized to the injured tissue where they participate in the repair process. Stromal cell-derived factor -1a (SDF-1a) is critical for stem cell trafficking during injury. Very little is known about how nutrition affects this process. Our objectives were to determine how Glutathione (GSH) depletion, observed with aging and in numerous chronic disease states, affects the functional response of bone marrow cells to SDF-1a.
Bone marrow stem cells (BMSC) from 8 week old C57BL/6J mice were isolated, and were cultured for 24 hours in buthionine sulfoximine (BSO), an inhibitor of GSH synthesis. SDF-1a (120 ng/ml) dependent chemotaxis was determined in viable cells, over 3 hours, using a modified Boyden chamber method. We found a 5 fold decline in migration, in cells depleted of GSH compared to control.
Our data show that GSH is important in the directional migration of BMSC to SDF-1a and indicate that signal transduction pathways initiated by SDF-1a may be redox sensitive. Therefore, in states of chronic oxidative imbalance, stem cell response to SDF-1a may be attenuated slowing tissue regeneration and repair. As nutrition can impact levels of GSH, dietary control of antioxidant status may provide an opportunity to enhance repair and improve recovery in patients with injury.
Classifications
Cellular Mechanisms of Nutritional Modulation in Immunity
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - End memo item - - //
2010年12月25日 星期六
Depletion of glutathione attenuates response of bone marrow stem cells to stromal cell-derived factor -1 [2007](IR91)
2010年12月23日 星期四
The role of glutathione in radiation and drug induced cytotoxicity. [1987](IR91){These studies demonstrate that GSH modulation may have a major impact on the cytotoxicity of redox active drugs}.png
Keywords:
Clock, Watch, GSH, glutathione, interaction, mechanism, intricacy, 錯綜複雜的事物(或細節)
2010年12月16日 星期四
Glutathione Transport Is a Unique Function of the ATP-binding Cassette Protein ABCG2 [2010[(IR91)
Glutathione Transport Is a Unique Function of the ATP-binding Cassette Protein ABCG2 [2010[(IR91)
// - - Begin memo item - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - //
(Memo Item created on December 16, 2010 07:55 PM)
- - - Begin title or keyword:
Glutathione Transport Is a Unique Function of the ATP-binding Cassette Protein ABCG2
http://www.jbc.org/content/285/22/16582
- - - End title or keyword:
First Published on March 23, 2010, doi: 10.1074/jbc.M109.090506
May 28, 2010 The Journal of Biological Chemistry, 285, 16582-16587.
Glutathione Transport Is a Unique Function of the ATP-binding Cassette Protein ABCG2 *
Heather M. Brechbuhl‡, Neal Gould§, Remy Kachadourian¶, Wayne R. Riekhof¶, Dennis R. Voelker¶ and Brian J. Day§¶‖**,1
- Author Affiliations
From the Departments of ‖Medicine,
**Immunology, and
§Pharmaceutical Sciences, University of Colorado Denver Health Sciences Center, Aurora, Colorado 80045 and
the Departments of ¶Medicine and
‡Pediatrics, National Jewish Health, Denver, Colorado 80206
1 To whom correspondence should be addressed: National Jewish Health, 1400 Jackson St., Denver, CO 80206. Tel.: 303-398-1121; Fax: 303-270-2263; E-mail: dayb@njhealth.org.
Abstract
Glutathione (GSH) transport is vital for maintenance of intracellular and extracellular redox balance. Only a few human proteins have been identified as transporters of GSH, glutathione disulfide (GSSG) and/or GSH conjugates (GS-X). Human epithelial MDA1586, A549, H1975, H460, HN4, and H157 cell lines were exposed to 2′,5′-dihydroxychalcone, which induces a GSH efflux response. A real-time gene superarray for 84 proteins found in families that have a known role in GSH, GSSG, and/or GS-X transport was employed to help identify potential GSH transporters. ABCG2 was identified as the only gene in the array that closely corresponded with the magnitude of 2′,5′-dihydroxychalcone (2′,5′-DHC)-induced GSH efflux. The role of human ABCG2 as a novel GSH transporter was verified in a Saccharomyces cerevisiae galactose-inducible gene expression system. Yeast expressing human ABCG2 had 2.5-fold more extracellular GSH compared with those not expressing ABCG2. GSH efflux in ABCG2-expressing yeast was abolished by the ABCG2 substrate methotrexate (10 μM), indicating competitive inhibition. In contrast, 2′,5′-DHC treatment of ABCG2-expressing yeast increased extracellular GSH levels in a dose-dependent manner with a maximum 3.5-fold increase in GSH after 24 h. In addition, suppression of ABCG2 with short hairpin RNA or ABCG2 overexpression in human epithelial cells decreased or increased extracellular GSH levels, respectively. Our data indicate that ABCG2 is a novel GSH transporter.
ABC Transporter Antioxidant Membrane Proteins Transport Amino Acids Yeast Glutathione
Footnotes
↵* This work was supported, in whole or in part, by National Institutes of Health Grants R01 HL084469 (to B. J. D.), R01 HL075523 (to B. J. D), R01 ES0175825, R37-GM32453 (to D. R. V), and 1F32-GM076798 (to W. R. R.). This work was also supported by American Cancer Society Great-West Division Postdoctoral Fellowship Award PF-06-288-01-CSM (to W. R. R.).
↵ The on-line version of this article (available at http://www.jbc.org) contains supplemental Experimental Procedures and additional references, Figs. 1–5, and Table 1.
Received December 2, 2009.
Revision received March 23, 2010.
© 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - End memo item - - //
ABCG2: structure, function and role in drug response. [2008](IR91)
ABCG2: structure, function and role in drug response. [2008](IR91)
// - - Begin memo item - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - //
(Memo Item created on December 16, 2010 10:48 PM)
- - - Begin title or keyword:
ABCG2: structure, function and role in drug response.
http://www.ncbi.nlm.nih.gov/pubmed/18370855
- - - End title or keyword:
Expert Opin Drug Metab Toxicol. 2008 Jan;4(1):1-15.
ABCG2: structure, function and role in drug response.
Polgar O, Robey RW, Bates SE.
National Cancer Institute, Medical Oncology Branch, Center for Cancer Research, NIH, 9000 Rockville Pike, Building 10, Room 13N240, Bethesda, MD 20892, USA.
Abstract
ABCG2 was discovered in multi-drug-resistant cancer cells, with the identification of chemotherapeutic agents, such as mitoxantrone, flavopiridol, methotrexate and irinotecan as substrates. Later, drugs from other therapeutic groups were also described as substrates, including antibiotics, antivirals, HMG-CoA reductase inhibitors and flavonoids. An expanding list of compounds inhibiting ABCG2 has also been generated. The wide variety of drugs transported by ABCG2 and its normal tissue distribution with highest levels in the placenta (胎盤), intestine and liver, suggest a role in protection against xenobiotics. ABCG2 also has an important role in the pharmacokinetics (藥物動力學) of its substrates. Single nucleotide polymorphisms of the gene were shown to alter either plasma concentrations of substrate drugs or levels of resistance against chemotherapeutic agents in cell lines. ABCG2 was also described as the determinant of the side population of stem cells. All these aspects of the transporter warrant further research aimed at understanding ABCG2's structure, function and regulation of expression.
PMID: 18370855 [PubMed - indexed for MEDLINE]
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - End memo item - - //
// - - Begin memo item - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - //
(Memo Item created on December 16, 2010 10:51 PM)
- - - Begin title or keyword:
Common added by WeiJin Tang (湯偉晉)
- - - End title or keyword:
Known GSH transporter
Glutathione Transport Is a Unique Function of the ATP-binding Cassette Protein ABCG2
ABCG2 is a GSH transporter
Source; URL of the source or Name of the professional paper:
Glutathione Transport Is a Unique Function of the ATP-binding Cassette Protein ABCG2 [2010[(IR91)
http://www.jbc.org/content/285/22/16582
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - End memo item - - //
// - - Begin memo item - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - //
(Memo Item created on December 16, 2010 10:56 PM)
- - - Begin title or keyword:
Auxiliary info for understanding this paper
- - - End title or keyword:
Pharmacokinetics
藥物動力學
pharmacokinetics (藥物動力學)
The branch of pharmacology concerned with the movement of drugs within the body.
The study of the action of drugs in the body: method and rate of excretion; duration of effect; etc.
Source:
wordnetweb.princeton.edu/perl/webwn
large intestine
大腸
small intestine
小腸
intestine
腸子
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - End memo item - - //
2010年11月15日 星期一
Normal alveolar epithelial lining fluid contains high levels of glutathione [1987](IR92)
Normal alveolar epithelial lining fluid contains high levels of glutathione [1987](IR92)
// - - Begin memo item - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - //
(Memo Item created on November 15, 2010 11:01 AM)
- - - Begin title or keyword:
Normal alveolar epithelial lining fluid contains high levels of glutathione
http://jap.physiology.org/cgi/content/short/63/1/152
- - - End title or keyword:
J Appl Physiol 63: 152-157, 1987; 8750-7587/87 $5.00
Journal of Applied Physiology, Vol 63, Issue 1 152-157, Copyright © 1987 by American Physiological Society
ARTICLES
Normal alveolar epithelial lining fluid contains high levels of glutathione
A. M. Cantin, S. L. North, R. C. Hubbard and R. G. Crystal
The epithelial cells on the alveolar surface of the human lower respiratory tract are vulnerable to toxic oxidants derived from inhaled pollutants or inflammatory cells. Although these lung cells have intracellular antioxidants, these defenses may be insufficient to protect the epithelial surface against oxidants present at the alveolar surface. This study demonstrates that the epithelial lining fluid (ELF) of the lower respiratory tract contains large amounts of the sulfhydryl-containing antioxidant glutathione (GSH). The total glutathione (the reduced form GSH and the disulfide GSSG) concentration of normal ELF was 140-fold higher than that in plasma of the same individuals, and 96% of the glutathione in ELF was in the reduced form. Compared with nonsmokers, cigarette smokers had 80% higher levels of ELF total glutathione, 98% of which was in the reduced form. Studies of cultured lung epithelial cells and fibroblasts demonstrated that these concentrations of reduced glutathione were sufficient to protect these cells against the burden of H2O2 in the range released by alveolar macrophages removed from the lower respiratory tract of nonsmokers and smokers, respectively, suggesting that the glutathione present in the alveolar ELF of normal individuals likely contributes to the protective screen against oxidants in the extracellular milieu of the lower respiratory tract.
This article has been cited by other articles:
P. C. Braga, M. Dal Sasso, M. Culici, A. Spallino, L. Marabini, T. Bianchi, and G. Nappi
Effects of sulphurous water on human neutrophil elastase release
Therapeutic Advances in Respiratory Disease, December 1, 2010; 4(6): 333 - 340. [Abstract] [PDF] A. M. Cantin
Cellular Response to Cigarette Smoke and Oxidants: Adapting to Survive
Proceedings of the ATS, November 1, 2010; 7(6): 368 - 375. [Abstract] [Full Text] [PDF] A. J. Henderson, R. B. Newson, M. Rose-Zerilli, S. M. Ring, J. W. Holloway, and S. O. Shaheen
Maternal Nrf2 and gluthathione-S-transferase polymorphisms do not modify associations of prenatal tobacco smoke exposure with asthma and lung function in school-aged children
Thorax, October 1, 2010; 65(10): 897 - 902. [Abstract] [Full Text] [PDF] A. K. Yadav, A. Bracher, S. F. Doran, M. Leustik, G. L. Squadrito, E. M. Postlethwait, and S. Matalon
Mechanisms and Modification of Chlorine-induced Lung Injury in Animals
Proceedings of the ATS, July 1, 2010; 7(4): 278 - 283. [Abstract] [Full Text] [PDF] H. Grasemann
Disease modifier genes in cystic fibrosis
Cystic Fibrosis, June 28, 2010; 50 - 65. [Abstract] [Fulltext] [PDF] W. MacNee
Oxidative stress and chronic obstructive pulmonary disease
Management of Chronic Obstructive Pulmonary Disease, June 28, 2010; 100 - 129. [Abstract] [Fulltext] [PDF] D. M. Boe, R. W. Vandivier, E. L. Burnham, and M. Moss
Alcohol abuse and pulmonary disease
J. Leukoc. Biol., November 1, 2009; 86(5): 1097 - 1104. [Abstract] [Full Text] [PDF] H. Zhang and H. J. Forman
Redox Regulation of {gamma}-Glutamyl Transpeptidase
Am. J. Respir. Cell Mol. Biol., November 1, 2009; 41(5): 509 - 515. [Abstract] [Full Text] [PDF] I. Rahman
Review: Antioxidant therapeutic advances in COPD
Therapeutic Advances in Respiratory Disease, December 1, 2008; 2(6): 351 - 374. [Abstract] [PDF] K. M. Heyob, L. K. Rogers, and S. E. Welty
Glutathione Reductase Targeted to Type II Cells Does Not Protect Mice from Hyperoxic Lung Injury
Am. J. Respir. Cell Mol. Biol., December 1, 2008; 39(6): 683 - 688. [Abstract] [Full Text] [PDF] C. Kariya, H. W. Chu, J. Huang, H. Leitner, R. J. Martin, and B. J. Day
Mycoplasma pneumoniae Infection and Environmental Tobacco Smoke Inhibit Lung Glutathione Adaptive Responses and Increase Oxidative Stress
Infect. Immun., October 1, 2008; 76(10): 4455 - 4462. [Abstract] [Full Text] [PDF] M. Siedlinski, D. S. Postma, C. C. van Diemen, A. Blokstra, H. A. Smit, and H. M. Boezen
Lung Function Loss, Smoking, Vitamin C Intake, and Polymorphisms of the Glutamate-Cysteine Ligase Genes
Am. J. Respir. Crit. Care Med., July 1, 2008; 178(1): 13 - 19. [Abstract] [Full Text] [PDF] S Rampal, R Kaur, R Sethi, O Singh, and N Sood
Ofloxacin-associated retinopathy in rabbits: role of oxidative stress
Human and Experimental Toxicology, May 1, 2008; 27(5): 409 - 415. [Abstract] [PDF] M. H. Lowry, B. P. McAllister, J.-C. Jean, L. A. S. Brown, R. P. Hughey, W. W. Cruikshank, S. Amar, E. C. Lucey, K. Braun, P. Johnson, et al.
Lung Lining Fluid Glutathione Attenuates IL-13-Induced Asthma
Am. J. Respir. Cell Mol. Biol., May 1, 2008; 38(5): 509 - 516. [Abstract] [Full Text] [PDF] J. Prousky
The Treatment of Pulmonary Diseases and Respiratory-Related Conditions with Inhaled (Nebulized or Aerosolized) Glutathione
Evid. Based Complement. Altern. Med., March 1, 2008; 5(1): 27 - 35. [Abstract] [Full Text] [PDF] R. Deb, F. Shakib, K. Reid, and H. Clark
Major House Dust Mite Allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 Degrade and Inactivate Lung Surfactant Proteins A and D
J. Biol. Chem., December 21, 2007; 282(51): 36808 - 36819. [Abstract] [Full Text] [PDF] M. van der Toorn, M. P. Smit-de Vries, D.-J. Slebos, H. G. de Bruin, N. Abello, A. J. M. van Oosterhout, R. Bischoff, and H. F. Kauffman
Cigarette smoke irreversibly modifies glutathione in airway epithelial cells
Am J Physiol Lung Cell Mol Physiol, November 1, 2007; 293(5): L1156 - L1162. [Abstract] [Full Text] [PDF] R. L. Auten, S. N. Mason, M. H. Whorton, W. R. Lampe, W. M. Foster, R. N. Goldberg, B. Li, J. S. Stamler, and K. M. Auten
Inhaled Ethyl Nitrite Prevents Hyperoxia-impaired Postnatal Alveolar Development in Newborn Rats
Am. J. Respir. Crit. Care Med., August 1, 2007; 176(3): 291 - 299. [Abstract] [Full Text] [PDF] M. Y. Yeh, E. L. Burnham, M. Moss, and L. A. S. Brown
Chronic Alcoholism Alters Systemic and Pulmonary Glutathione Redox Status
Am. J. Respir. Crit. Care Med., August 1, 2007; 176(3): 270 - 276. [Abstract] [Full Text] [PDF] H. Fischer, L. K. Gonzales, V. Kolla, C. Schwarzer, F. Miot, B. Illek, and P. L. Ballard
Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells
Am J Physiol Lung Cell Mol Physiol, June 1, 2007; 292(6): L1506 - L1514. [Abstract] [Full Text] [PDF] C. Kariya, H. Leitner, E. Min, C. van Heeckeren, A. van Heeckeren, and B. J. Day
A role for CFTR in the elevation of glutathione levels in the lung by oral glutathione administration
Am J Physiol Lung Cell Mol Physiol, June 1, 2007; 292(6): L1590 - L1597. [Abstract] [Full Text] [PDF] N. L. Reynaert, E. F. M. Wouters, and Y. M. W. Janssen-Heininger
Modulation of Glutaredoxin-1 Expression in a Mouse Model of Allergic Airway Disease
Am. J. Respir. Cell Mol. Biol., February 1, 2007; 36(2): 147 - 151. [Abstract] [Full Text] [PDF] S. I. Rennard, S. Togo, and O. Holz
Cigarette Smoke Inhibits Alveolar Repair: A Mechanism for the Development of Emphysema
Proceedings of the ATS, November 1, 2006; 3(8): 703 - 708. [Abstract] [Full Text] [PDF] T. Sato, K. Seyama, Y. Sato, H. Mori, S. Souma, T. Akiyoshi, Y. Kodama, T. Mori, S. Goto, K. Takahashi, et al.
Senescence Marker Protein-30 Protects Mice Lungs from Oxidative Stress, Aging, and Smoking
Am. J. Respir. Crit. Care Med., September 1, 2006; 174(5): 530 - 537. [Abstract] [Full Text] [PDF] I. Rahman and I. M. Adcock
Oxidative stress and redox regulation of lung inflammation in COPD.
Eur. Respir. J., July 1, 2006; 28(1): 219 - 242. [Abstract] [Full Text] [PDF] K Nagai, T Betsuyaku, T Kondo, Y Nasuhara, and M Nishimura
Long term smoking with age builds up excessive oxidative stress in bronchoalveolar lavage fluid
Thorax, June 1, 2006; 61(6): 496 - 502. [Abstract] [Full Text] [PDF] A. M. Cantin, J. W. Hanrahan, G. Bilodeau, L. Ellis, A. Dupuis, J. Liao, J. Zielenski, and P. Durie
Cystic Fibrosis Transmembrane Conductance Regulator Function Is Suppressed in Cigarette Smokers
Am. J. Respir. Crit. Care Med., May 15, 2006; 173(10): 1139 - 1144. [Abstract] [Full Text] [PDF] A. Papi, F. Luppi, F. Franco, and L. M. Fabbri
Pathophysiology of Exacerbations of Chronic Obstructive Pulmonary Disease
Proceedings of the ATS, May 1, 2006; 3(3): 245 - 251. [Abstract] [Full Text] [PDF] T. J. Moraes, J. Plumb, R. Martin, E. Vachon, V. Cherepanov, A. Koh, C. Loeve, J. Jongstra-Bilen, J. H. Zurawska, J. V. Kus, et al.
Abnormalities in the Pulmonary Innate Immune System in Cystic Fibrosis
Am. J. Respir. Cell Mol. Biol., March 1, 2006; 34(3): 364 - 374. [Abstract] [Full Text] [PDF] S. Kasagi, K. Seyama, H. Mori, S. Souma, T. Sato, T. Akiyoshi, H. Suganuma, and Y. Fukuchi
Tomato juice prevents senescence-accelerated mouse P1 strain from developing emphysema induced by chronic exposure to tobacco smoke
Am J Physiol Lung Cell Mol Physiol, February 1, 2006; 290(2): L396 - L404. [Abstract] [Full Text] [PDF] A. M. Cantin, G. Bilodeau, C. Ouellet, J. Liao, and J. W. Hanrahan
Oxidant stress suppresses CFTR expression
Am J Physiol Cell Physiol, January 1, 2006; 290(1): C262 - C270. [Abstract] [Full Text] [PDF] W. MacNee
Treatment of stable COPD: antioxidants
Eur. Respir. Rev., September 1, 2005; 14(94): 12 - 22. [Abstract] [Full Text] [PDF] N. Baltes, M. N'diaye, I. D. Jacobsen, A. Maas, F. F. R. Buettner, and G.-F. Gerlach
Deletion of the Anaerobic Regulator HlyX Causes Reduced Colonization and Persistence of Actinobacillus pleuropneumoniae in the Porcine Respiratory Tract
Infect. Immun., August 1, 2005; 73(8): 4614 - 4619. [Abstract] [Full Text] [PDF] V L Kinnula
Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases
Thorax, August 1, 2005; 60(8): 693 - 700. [Abstract] [Full Text] [PDF] J. J. Salmen, F. Skufca, A. Matt, G. Gushansky, A. Mason, and C. S. Gardiner
Role of Glutathione in Reproductive Tract Secretions on Mouse Preimplantation Embryo Development
Biol Reprod, August 1, 2005; 73(2): 308 - 314. [Abstract] [Full Text] [PDF] T. M. McKeever, S. A. Lewis, H. A. Smit, P. Burney, J. R. Britton, and P. A. Cassano
The Association of Acetaminophen, Aspirin, and Ibuprofen with Respiratory Disease and Lung Function
Am. J. Respir. Crit. Care Med., May 1, 2005; 171(9): 966 - 971. [Abstract] [Full Text] [PDF] E M Drost, K M Skwarski, J Sauleda, N Soler, J Roca, A Agusti, and W MacNee
Oxidative stress and airway inflammation in severe exacerbations of COPD
Thorax, April 1, 2005; 60(4): 293 - 300. [Abstract] [Full Text] [PDF] K Lund, C Dunster, I Ramis, T Sandstrom, F J Kelly, P SoStrand, P Schwarze, E Skovlund, J Boe, J Kongerud, et al.
Inflammatory markers in bronchoalveolar lavage fluid from human volunteers 2 hours after hydrogen fluoride exposure
Human and Experimental Toxicology, March 1, 2005; 24(3): 101 - 108. [Abstract] [PDF] B. J. Day
Glutathione: A Radical Treatment for Cystic Fibrosis Lung Disease?
Chest, January 1, 2005; 127(1): 12 - 14. [Full Text] [PDF] C. Bishop, V. M. Hudson, S. C. Hilton, and C. Wilde
A Pilot Study of the Effect of Inhaled Buffered Reduced Glutathione on the Clinical Status of Patients With Cystic Fibrosis
Chest, January 1, 2005; 127(1): 308 - 317. [Abstract] [Full Text] [PDF] R. Schmidt, T. Luboeinski, P. Markart, C. Ruppert, C. Daum, F. Grimminger, W. Seeger, and A. Gunther
Alveolar antioxidant status in patients with acute respiratory distress syndrome
Eur. Respir. J., December 1, 2004; 24(6): 994 - 999. [Abstract] [Full Text] [PDF] A. Shukla, T. Flanders, K. M. Lounsbury, and B. T. Mossman
The {gamma}-Glutamylcysteine Synthetase and Glutathione Regulate Asbestos-induced Expression of Activator Protein-1 Family Members and Activity
Cancer Res., November 1, 2004; 64(21): 7780 - 7786. [Abstract] [Full Text] [PDF] K. M. Beeh, J. Beier, N. Koppenhoefer, and R. Buhl
Increased Glutathione Disulfide and Nitrosothiols in Sputum Supernatant of Patients With Stable COPD
Chest, October 1, 2004; 126(4): 1116 - 1122. [Abstract] [Full Text] [PDF] D. P. Arfsten, E. W. Johnson, A. R. Thitoff, A. E. Jung, E. R. Wilfong, S. M. Lohrke, T. A. Bausman, J. S. Eggers, and A. J. Bobb
Impact of 30-Day Oral Dosing with N-acetyl-L-cysteine on Sprague-Dawley Rat Physiology
International Journal of Toxicology, July 1, 2004; 23(4): 239 - 247. [Abstract] [Full Text] [PDF] F. L. M. Ricciardolo, P. J. Sterk, B. Gaston, and G. Folkerts
Nitric Oxide in Health and Disease of the Respiratory System
Physiol Rev, July 1, 2004; 84(3): 731 - 765. [Abstract] [Full Text] [PDF] P.N.R. Dekhuijzen
Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease
Eur. Respir. J., April 1, 2004; 23(4): 629 - 636. [Abstract] [Full Text] [PDF] B. J. Day, A. M. van Heeckeren, E. Min, and L. W. Velsor
Role for Cystic Fibrosis Transmembrane Conductance Regulator Protein in a Glutathione Response to Bronchopulmonary Pseudomonas Infection
Infect. Immun., April 1, 2004; 72(4): 2045 - 2051. [Abstract] [Full Text] [PDF] M. Griese, J. Ramakers, A. Krasselt, V. Starosta, S. van Koningsbruggen, R. Fischer, F. Ratjen, B. Mullinger, R. M. Huber, K. Maier, et al.
Improvement of Alveolar Glutathione and Lung Function but Not Oxidative State in Cystic Fibrosis
Am. J. Respir. Crit. Care Med., April 1, 2004; 169(7): 822 - 828. [Abstract] [Full Text] [PDF] C. J. Venglarik, J. Giron-Calle, A. F. Wigley, E. Malle, N. Watanabe, and H. J. Forman
Hypochlorous acid alters bronchial epithelial cell membrane properties and prevention by extracellular glutathione
J Appl Physiol, December 1, 2003; 95(6): 2444 - 2452. [Abstract] [Full Text] J. D. Crapo
Redox Active Agents in Inflammatory Lung Injury
Am. J. Respir. Crit. Care Med., November 1, 2003; 168(9): 1027 - 1028. [Full Text] J. A. Wickenden, M. C. H. Clarke, A. G. Rossi, I. Rahman, S. P. Faux, K. Donaldson, and W. MacNee
Cigarette Smoke Prevents Apoptosis through Inhibition of Caspase Activation and Induces Necrosis
Am. J. Respir. Cell Mol. Biol., November 1, 2003; 29(5): 562 - 570. [Abstract] [Full Text] N. R. Hackett, A. Heguy, B.-G. Harvey, T. P. O'Connor, K. Luettich, D. B. Flieder, R. Kaplan, and R. G. Crystal
Variability of Antioxidant-Related Gene Expression in the Airway Epithelium of Cigarette Smokers
Am. J. Respir. Cell Mol. Biol., September 1, 2003; 29(3): 331 - 343. [Abstract] [Full Text] [PDF] C. Neurohr, A-G. Lenz, I. Ding, H. Leuchte, T. Kolbe, and J. Behr
Glutamate-cysteine ligase modulatory subunit in BAL alveolar macrophages of healthy smokers
Eur. Respir. J., July 1, 2003; 22(1): 82 - 87. [Abstract] [Full Text] [PDF] V. L. Kinnula and J. D. Crapo
Superoxide Dismutases in the Lung and Human Lung Diseases
Am. J. Respir. Crit. Care Med., June 15, 2003; 167(12): 1600 - 1619. [Abstract] [Full Text] [PDF] C. E. Healy, L. D. Kier, F. Broeckaert, and M. A. Martens
A Review of the Genotoxicity of Triallate
International Journal of Toxicology, May 1, 2003; 22(3): 233 - 251. [Abstract] [PDF] F.J. Kelly, C. Dunster, and I. Mudway
Air pollution and the elderly: oxidant/antioxidant issues worth consideration
Eur. Respir. J., May 1, 2003; 21(40_suppl): 70S - 75s. [Abstract] [Full Text] [PDF] S.-J. Yong, Z. Vuk-Pavlovic, J. E. Standing, E. C. Crouch, and A. H. Limper
Surfactant Protein D-Mediated Aggregation of Pneumocystis carinii Impairs Phagocytosis by Alveolar Macrophages
Infect. Immun., April 1, 2003; 71(4): 1662 - 1671. [Abstract] [Full Text] [PDF] T. H. Stenson, A. K. Patton, and A. A. Weiss
Reduced Glutathione Is Required for Pertussis Toxin Secretion by Bordetella pertussis
Infect. Immun., March 1, 2003; 71(3): 1316 - 1320. [Abstract] [Full Text] [PDF] H Kanazawa, S Shiraishi, K Hirata, and J Yoshikawa
Imbalance between levels of nitrogen oxides and peroxynitrite inhibitory activity in chronic obstructive pulmonary disease
Thorax, February 1, 2003; 58(2): 106 - 109. [Abstract] [Full Text] [PDF] S. El-Chemaly, M. Salathe, S. Baier, G. E. Conner, and R. Forteza
Hydrogen Peroxide-Scavenging Properties of Normal Human Airway Secretions
Am. J. Respir. Crit. Care Med., February 1, 2003; 167(3): 425 - 430. [Abstract] [Full Text] [PDF] E. M. Leslie, R. G. Deeley, and S. P. C. Cole
Bioflavonoid Stimulation of Glutathione Transport by the 190-kDa Multidrug Resistance Protein 1 (MRP1)
Drug Metab. Dispos., January 1, 2003; 31(1): 11 - 15. [Abstract] [Full Text] [PDF] K. J Lenton, A. T Sane, H. Therriault, A. M Cantin, H. Payette, and J R. Wagner
Vitamin C augments lymphocyte glutathione in subjects with ascorbate deficiency
Am J Clin Nutr, January 1, 2003; 77(1): 189 - 195. [Abstract] [Full Text] [PDF] I. Y. Haddad
Idiopathic Pneumonia after Marrow Transplantation: When Are Antioxidants Effective?
Am. J. Respir. Crit. Care Med., December 15, 2002; 166(12): 1532 - 1534. [Full Text] [PDF] K. S. Bhalla and R. J. Folz
Idiopathic Pneumonia Syndrome after Syngeneic Bone Marrow Transplant in Mice
Am. J. Respir. Crit. Care Med., December 15, 2002; 166(12): 1579 - 1589. [Abstract] [Full Text] [PDF] I L C Chapple, G Brock, C Eftimiadi, and J B Matthews
Glutathione in gingival crevicular fluid and its relation to local antioxidant capacity in periodontal health and disease
Mol. Pathol., December 1, 2002; 55(6): 367 - 373. [Abstract] [Full Text] [PDF] W. R. Henderson Jr., E. Y. Chi, J.-L. Teo, C. Nguyen, and M. Kahn
A Small Molecule Inhibitor of Redox-Regulated NF-{kappa}B and Activator Protein-1 Transcription Blocks Allergic Airway Inflammation in a Mouse Asthma Model
J. Immunol., November 1, 2002; 169(9): 5294 - 5299. [Abstract] [Full Text] [PDF] J. C. Jean, Y. Liu, L. A. Brown, R. E. Marc, E. Klings, and M. Joyce-Brady
gamma -Glutamyl transferase deficiency results in lung oxidant stress in normoxia
Am J Physiol Lung Cell Mol Physiol, October 1, 2002; 283(4): L766 - L776. [Abstract] [Full Text] [PDF] P. S. Hiemstra
The Adaptive Response of Smokers to Oxidative Stress: Moving from Culture to Tissue
Am. J. Respir. Crit. Care Med., September 1, 2002; 166(5): 635 - 636. [Full Text] [PDF] T. Harju, R. Kaarteenaho-Wiik, Y. Soini, R. Sormunen, and V. L. Kinnula
Diminished Immunoreactivity of {gamma}-Glutamylcysteine Synthetase in the Airways of Smokers' Lung
Am. J. Respir. Crit. Care Med., September 1, 2002; 166(5): 754 - 759. [Abstract] [Full Text] [PDF] S. A. A. Comhair and S. C. Erzurum
Antioxidant responses to oxidant-mediated lung diseases
Am J Physiol Lung Cell Mol Physiol, August 1, 2002; 283(2): L246 - L255. [Abstract] [Full Text] [PDF] A. M. Abushamaa, T. A. Sporn, and R. J. Folz
Oxidative stress and inflammation contribute to lung toxicity after a common breast cancer chemotherapy regimen
Am J Physiol Lung Cell Mol Physiol, August 1, 2002; 283(2): L336 - L345. [Abstract] [Full Text] [PDF] J. Kloek, I. van Ark, N. Bloksma, F. De Clerck, F. P. Nijkamp, and G. Folkerts
Glutathione and other low-molecular-weight thiols relax guinea pig trachea ex vivo: interactions with nitric oxide?
Am J Physiol Lung Cell Mol Physiol, August 1, 2002; 283(2): L403 - L408. [Abstract] [Full Text] [PDF] H. J. Kim, X. Liu, H. Wang, T. Kohyama, T. Kobayashi, F.-Q. Wen, D. J. Romberger, S. Abe, W. MacNee, I. Rahman, et al.
Glutathione prevents inhibition of fibroblast-mediated collagen gel contraction by cigarette smoke
Am J Physiol Lung Cell Mol Physiol, August 1, 2002; 283(2): L409 - L417. [Abstract] [Full Text] [PDF] S. W. Griffiths, J. King, and C. L. Cooney
The Reactivity and Oxidation Pathway of Cysteine 232 in Recombinant Human alpha 1-Antitrypsin
J. Biol. Chem., July 5, 2002; 277(28): 25486 - 25492. [Abstract] [Full Text] [PDF] H. Jardine, W. MacNee, K. Donaldson, and I. Rahman
Molecular Mechanism of Transforming Growth Factor (TGF)-beta 1-induced Glutathione Depletion in Alveolar Epithelial Cells. INVOLVEMENT OF AP-1/ARE AND Fra-1
J. Biol. Chem., June 7, 2002; 277(24): 21158 - 21166. [Abstract] [Full Text] [PDF] B. Gaston and J. F. Hunt
How Acidopneic Is My Patient? A New Question in the Pulmonary Laboratory
Am. J. Respir. Crit. Care Med., May 15, 2002; 165(10): 1349 - 1350. [Full Text] [PDF] S. Hammerschmidt, N. Buchler, and H. Wahn
Tissue Lipid Peroxidation and Reduced Glutathione Depletion in Hypochlorite-Induced Lung Injury
Chest, February 1, 2002; 121(2): 573 - 581. [Abstract] [Full Text] [PDF] V L Kinnula, S Lehtonen, R Kaarteenaho-Wiik, E Lakari, P Paakko, S W Kang, S G Rhee, and Y Soini
Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis
Thorax, February 1, 2002; 57(2): 157 - 164. [Abstract] [Full Text] [PDF] G. Sun, K. Crissman, J. Norwood, J. Richards, R. Slade, and G. E. Hatch
Oxidative interactions of synthetic lung epithelial lining fluid with metal-containing particulate matter
Am J Physiol Lung Cell Mol Physiol, October 1, 2001; 281(4): L807 - L815. [Abstract] [Full Text] [PDF] S. Yang, V. A. Porter, D. N. Cornfield, C. Milla, A. Panoskaltsis-Mortari, B. R. Blazar, and I. Y. Haddad
Effects of oxidant stress on inflammation and survival of iNOS knockout mice after marrow transplantation
Am J Physiol Lung Cell Mol Physiol, October 1, 2001; 281(4): L922 - L930. [Abstract] [Full Text] [PDF] J. H. Roum, A. S. Aledia, L. A. Carungcong, K.-J. Kim, and Z. Borok
Extracellular glutathione inhibits oxygen-induced permeability changes in alveolar epithelial monolayers
J Appl Physiol, August 1, 2001; 91(2): 748 - 754. [Abstract] [Full Text] [PDF] E. Cavarra, M. Lucattelli, F. Gambelli, B. Bartalesi, S. Fineschi, A. Szarka, F. Giannerini, P. A. Martorana, and G. Lungarella
Human SLPI inactivation after cigarette smoke exposure in a new in vivo model of pulmonary oxidative stress
Am J Physiol Lung Cell Mol Physiol, August 1, 2001; 281(2): L412 - L417. [Abstract] [Full Text] [PDF] L. Gao, J. R. Broughman, T. Iwamoto, J. M. Tomich, C. J. Venglarik, and H. J. Forman
Synthetic chloride channel restores glutathione secretion in cystic fibrosis airway epithelia
Am J Physiol Lung Cell Mol Physiol, July 1, 2001; 281(1): L24 - L30. [Abstract] [Full Text] [PDF] L. W. Velsor, A. van Heeckeren, and B. J. Day
Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice
Am J Physiol Lung Cell Mol Physiol, July 1, 2001; 281(1): L31 - L38. [Abstract] [Full Text] [PDF] B. Nemery, A. Bast, J. Behr, P.J.A. Borm, S.J. Bourke, Ph. Camus, P. De Vuyst, H.M. Jansen, V.L. Kinnula, D. Lison, et al.
Interstitial lung disease induced by exogenous agents: factors governing susceptibility
Eur. Respir. J., July 1, 2001; 18(32_suppl): 30S - 42s. [Abstract] [Full Text] [PDF] N Dauletbaev, J Rickmann, K Viel, R Buhl, T-O-F Wagner, and J Bargon
Glutathione in induced sputum of healthy individuals and patients with asthma
Thorax, January 1, 2001; 56(1): 13 - 18. [Abstract] [Full Text] X. Jiang, D. H. Ingbar, and S. M. O'Grady
Selectivity properties of a Na-dependent amino acid cotransport system in adult alveolar epithelial cells
Am J Physiol Lung Cell Mol Physiol, November 1, 2000; 279(5): L911 - L915. [Abstract] [Full Text] [PDF] C. Rusznak, P. R. Mills, J. L. Devalia, R. J. Sapsford, R. J. Davies, and S. Lozewicz
Effect of Cigarette Smoke on the Permeability and IL-1beta and sICAM-1 Release from Cultured Human Bronchial Epithelial Cells of Never-Smokers, Smokers, and Patients with Chronic Obstructive Pulmonary Disease
Am. J. Respir. Cell Mol. Biol., October 1, 2000; 23(4): 530 - 536. [Abstract] [Full Text] N. E. AVISSAR, C. K. REED, C. COX, M. W. FRAMPTON, and J. N. FINKELSTEIN
Ozone, But Not Nitrogen Dioxide, Exposure Decreases Glutathione Peroxidases in Epithelial Lining Fluid of Human Lung
Am. J. Respir. Crit. Care Med., October 1, 2000; 162(4): 1342 - 1347. [Abstract] [Full Text] [PDF] A. M. CANTIN, B. PAQUETTE, M. RICHTER, and P. LARIVEE
Albumin-mediated Regulation of Cellular Glutathione and Nuclear Factor Kappa B Activation
Am. J. Respir. Crit. Care Med., October 1, 2000; 162(4): 1539 - 1546. [Abstract] [Full Text] [PDF] K. Fang, R. Johns, T. Macdonald, M. Kinter, and B. Gaston
S-nitrosoglutathione breakdown prevents airway smooth muscle relaxation in the guinea pig
Am J Physiol Lung Cell Mol Physiol, October 1, 2000; 279(4): L716 - L721. [Abstract] [Full Text] [PDF] R. M. Balansky, F. D'Agostini, A. Izzotti, and S. De Flora
Less than additive interaction between cigarette smoke and chromium(VI) in inducing clastogenic damage in rodents
Carcinogenesis, September 1, 2000; 21(9): 1677 - 1682. [Abstract] [Full Text] [PDF] J. BEHR, B. DEGENKOLB, T. BEINERT, F. KROMBACH, and C. VOGELMEIER
Pulmonary Glutathione Levels in Acute Episodes of Farmer's Lung
Am. J. Respir. Crit. Care Med., June 1, 2000; 161(6): 1968 - 1971. [Abstract] [Full Text] W. MacNee
Oxidants/Antioxidants and COPD
Chest, May 1, 2000; 117 (2009): 303S - 317S. [Abstract] [Full Text] [PDF] S. De Flora
Threshold mechanisms and site specificity in chromium(VI) carcinogenesis
Carcinogenesis, April 1, 2000; 21(4): 533 - 541. [Abstract] [Full Text] [PDF] S. O Shaheen, J. A C Sterne, C. E Songhurst, and P. G J Burney
Frequent paracetamol use and asthma in adults
Thorax, April 1, 2000; 55(4): 266 - 270. [Abstract] [Full Text] B. Lothian, V. Grey, R. J. Kimoff, and L. C. Lands
Treatment of Obstructive Airway Disease With a Cysteine Donor Protein Supplement: A Case Report
Chest, March 1, 2000; 117(3): 914 - 916. [Abstract] [Full Text] [PDF] M. MOSS, D. M. GUIDOT, M. WONG-LAMBERTINA, T. TEN HOOR, R. L. PEREZ, and L. A. S. BROWN
The Effects of Chronic Alcohol Abuse on Pulmonary Glutathione Homeostasis
Am. J. Respir. Crit. Care Med., February 1, 2000; 161(2): 414 - 419. [Abstract] [Full Text]
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - End memo item - - //
2010年10月28日 星期四
Gene Expression and Thiol Redox State [2002](IR91)
Gene Expression and Thiol Redox State
By CAROLE KRETZ-REMY and ANDRE-PATRICK ARRIGO
Introduction
Cells have developed sophisticated mechanisms to maintain redox state homeostasis and/or to try to cope with the reactive oxygen species (ROS) produced during oxidative stress. 1'2 These mechanisms either scavenge and/or detoxify ROS, block their production, or sequester transition metals that are a source of free electrons. They include detoxifing enzymes, vitamins C and E, or thiol-containing molecules such as glutathione or thioredoxin. Glutathione exists in either a reduced (GSH) or an oxidized (glutathione disulfide, GSSG) form and participates in redox reactions through the reversible oxidation of its active thiol. In addition, it acts as a coenzyme of numerous enzymes involved in cell defense (i.e., glutathione peroxidases, glutathione S-transferases, thiol transferases, formaldehyde dehydrogenase,
Extracellular Redox Modulation by Regulatory T Cells [2009](IR91)
Extracellular Redox Modulation by Regulatory T Cells [2009](IR91){Mechanism of extracellular cysteine accumulation}(full view)[2010-10-25].png
Extracellular Redox Modulation by Regulatory T Cells [2009](IR91){Mechanism of extracellular cysteine accumulation}.png
2010年8月10日 星期二
國立清華大學_博碩士論文_{以基因轉殖大腸桿菌ABLE C製備硫化鎘奈米粒子 (Biosynthesis of Cadmium Sulfide Nanoparticle in Gene Modified Escherichia coli ABLE C)} [2007](IR91)
http://nthur.lib.nthu.edu.tw/handle/987654321/32424
National Tsing Hua University Institutional Repository > 工學院 > 化學工程學系所 > 博碩士論文 > Item 987654321/32424
Please use this identifier to cite or link to this item: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/32424
Title: 以基因轉殖大腸桿菌ABLE C製備硫化鎘奈米粒子
Other Titles: Biosynthesis of Cadmium Sulfide Nanoparticle in Gene Modified Escherichia coli ABLE C
Authors: 田俊文
Chun-Wen Tien
Description: 碩士
國立清華大學
化學工程學系
GH000943606
Date: 2007
Keywords:
硫化鎘
奈米粒子
Glutathione
大腸桿菌
生物法
Abstract:
本研究以基因轉殖大腸桿菌進行CdS奈米粒子的製備,研究內容結合生物科技以及奈米技術兩個領域。CdS為擁有直接能隙的II-V半導體材料,粒徑小於6 nm以下時,有明顯的量子侷限效應,被視為新一代的LED發光材料。除此之外,CdS奈米粒子應用於各類感測器以及生物螢光標定中的研究也相當的多。
本研究首次利用基因工程的手法,將gshA及gshB基因片段以重組載體送入細胞中,分別表現glutathione合成酵素γ-GCS及GS,藉此促進大腸桿菌中glutathione的含量,來量產CdS奈米粒子。GSH分子為生物合成CdS奈米粒子之關鍵,其含量之增加有助於細胞生成CdS粒子。我們證實,大腸桿菌ABLE C生成之CdS奈米粒子粒徑介於2~5 nm之間。經過基因轉殖的菌株,細胞中GS合成酵素含量增加,細胞中CdS粒子產量有顯著提升。
粒子特性方面,基因轉殖大腸桿菌所生產的CdS奈米粒子由於粒子表面有較多的GSH包覆,因此在水溶液中分散性更為提升,而重組蛋白的產生對所生成CdS的粒徑無太大影響。在此我們證明了以大腸桿菌生產CdS奈米粒子的可行性,透過基因轉殖細胞能更近一步增進產量和改善產物性質。在實驗過程中,我們也證實了GSH含量的多寡,確實引響細胞生產CdS的能力,對於此系統背後生理機制的釐清也有所助益。
Cadmium sulfide nanoparticles were synthesized intracellularly in gene modified Escherichia coli ABLE C. The nanoparticles, a known semiconducting material, which have unique optical and electronic properties, have potential for application in the emerging field of nanoelectronics. To produce nanomaterial cheaply and efficiently, biological methods of synthesis are being explored. Schizosaccharomyces pombe were found having the capacity to synthesize CdS nanoparticles intracellularly in 1983. Recently, in 2004, Sweeney found that E. coli also have ability to synthesize CdS nanoparticles. Morever, in his study, he pointed out that the cellular glutathione can enhance the formation of nanoparticles. Inspried by Sweeney, we constructed a gene modified E. coli ABLE C which could use for glutathione overproduction and attempt to figure out how this parameter can enhance the synthesis of nanoparticles within bacterial cells. Our results showed that nanoparticles biosynthesis increased about 1.6 –fold in gene modified cells compared to wild type cells. HRTEM data showed that the nanoparticles had a Wurtzite hexagonal lattice structure and most of the nanoparticles were in the size range of 2-5 nm. We also observed that nanoparticles synthesized in gene modified cells were dispersed better in water than these in wild type cells. The well dispersion behavior was due to more glutathione coated on the nanoparticles. To our best knowledge, this is the first report using genetic modification to enhance biosynthsis of CdS nanoparticles and to unravel the siginificance of glutathione in this procedure. By understanding parameters of nanoparticles synthesis, it might be possible to modulate the properties of biosynthesized nanopartilces, such as size, shae, and crystal structure.
Appears in Collections: [化學工程學系所] 博碩士論文
2010年3月23日 星期二
查詢 美國史丹佛大學 (Stanford University) 的專業資料庫 HighWire
查詢 美國史丹佛大學 (Stanford University) 的專業資料庫 HighWire
Query professional database HighWire at Stanford University, USA
Glutathione, depletion
穀胱甘肽,耗盡
使用 關鍵字 {Glutathione, depletion (穀胱甘肽,耗盡)} 去查詢 美國史丹佛大學 (Stanford University) 的專業資料庫 HighWire
Glutathione, depletion, cancer
穀胱甘肽,耗盡,癌症
使用 關鍵字 {Glutathione, depletion, cancer (穀胱甘肽,耗盡,癌症)} 去查詢 美國史丹佛大學 (Stanford University) 的專業資料庫 HighWire
Title of this page:
查詢 美國史丹佛大學 (Stanford University) 的專業資料庫 HighWire
Query professional database HighWire at Stanford University, USA
Version of this page:
Version 1.00.02; Last Updated on [2010-03-23-PM-09-10-56]
2010年2月28日 星期日
Glutathione, oxidative stress and neurodegeneration. [2000](IR92)
Glutathione, oxidative stress and neurodegeneration [2000](IR92)
Eur J Biochem. 2000 Aug;267(16):4904-11.
Glutathione, oxidative stress and neurodegeneration.
Schulz JB, Lindenau J, Seyfried J, Dichgans J.
http://www.ncbi.nlm.nih.gov/pubmed/10931172?dopt=Abstract
Neurodegeneration Laboratory, Department of Neurology, University of Tübingen, Germany. joerg.b.schulz@uni-tuebingen.de
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species and mitochondrial dysfunction. Here, we review the evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders. Glutathione is an important intracellular antioxidant that protects against a variety of different antioxidant species. An important role for glutathione was proposed for the pathogenesis of Parkinson's disease, because a decrease in total glutathione concentrations in the substantia nigra has been observed in preclinical stages, at a time at which other biochemical changes are not yet detectable. Because glutathione does not cross the blood-brain barrier other treatment options to increase brain concentrations of glutathione including glutathione analogs, mimetics or precursors are discussed.
PMID: 10931172 [PubMed - indexed for MEDLINE]
2010年1月19日 星期二
We are living in a world, not in an invisible box. So, please step out of the box!
2010-01-20
「We are living in a world, not in an invisible box. So, please step out of the box!」
「我們是生活在一個世界裡面,而不是住在一個隱形的盒子裡。所以,請 從盒子裡面走出來。」
「我們是生活在一個世界裡面,而不是住在一個隱形的盒子裡。所以,請 從盒子裡面走出來,看看這個世界和自己周遭的環境。然後,摸摸自己的良心,問問自己,我們有把其他的人看成,就像是我們自己的兄弟姊妹一樣,去善待他們嗎? 請務必記得, 神 對我們的教導是: 要 愛人如己 而且要 公平地去對待每一個人,把他們當成是 一個人,一個擁有 天賦人權 和 為人之尊嚴 的人,並且善待他們。」
湯偉晉 (WeiJin Tang) 親手原創性地寫作於 西元 2010-01-20
File name of the attached file:
WeiJin Tang - {We are living in a world, not in an invisible box. So, please step out of the box!}[2010-01-20](IR90).gif
我們是生活在一個世界裡面,而不是住在一個隱形的盒子裡。所以,請 從盒子裡面走出來。
2010-01-20
「We are living in a world, not in an invisible box. So, please step out of the box!」
「我們是生活在一個世界裡面,而不是住在一個隱形的盒子裡。所以,請 從盒子裡面走出來。」
「我們是生活在一個世界裡面,而不是住在一個隱形的盒子裡。所以,請 從盒子裡面走出來,看看這個世界和自己周遭的環境。然後,摸摸自己的良心,問問自己,我們有把其他的人看成,就像是我們自己的兄弟姊妹一樣,去善待他們嗎? 請務必記得, 神 對我們的教導是: 要 愛人如己 而且要 公平地去對待每一個人,把他們當成是 一個人,一個擁有 天賦人權 和 為人之尊嚴 的人,並且善待他們。」
湯偉晉 (WeiJin Tang) 親手原創性地寫作於 西元 2010-01-20
File name of the attached file:
WeiJin Tang - {We are living in a world, not in an invisible box. So, please step out of the box!}[2010-01-20](IR90).gif